

State of CERES

Norman G. Loeb NASA Langley Research Center, Hampton, VA

Earth Radiation Budget Workshop, October 18-21, 2016 ECMWF, Reading, UK

CERES Meeting

Review status of CERES Instruments and Data Products:

- Status of CERES
- CERES Terra, Aqua, S-NPP SW/LW/TOTAL Channel Calibration Update
- CERES FM6 and RBI Update
- MODIS & VIIRS Cloud Algorithm & Validation Status
- ADM, SOFA, SARB and TISA Working Group Reports
- EBAF-TOA & EBAF-SFC Edition 4 Updates
- FLASHFLUX Update
- Data Management Team Update: Terra/Aqua/S-NPP
- Atmospheric Sciences Data Center (ASDC) Update
- CERES Communication Activities

CERES Team Leads

- Principal Investigator: Norman Loeb
- Project Scientist: Kory Priestley

CERES Working Groups:

- Instrument: Kory Priestley
- Clouds: Pat Minnis (Lead); Bill Smith Jr., (Deputy)
- Inversion: Wenying Su
- SOFA: David Kratz
- SARB: Seiji Kato
- TISA: David Doelling
- ERBElike: Takmeng Wong
- FLASHFlux: Paul Stackhouse & David Kratz
- Data Management: Jonathan Gleason
- ASDC: John Kusterer

CERES & RBI Flight Schedules

- Currently, 5 CERES instruments fly on 3 satellites: Terra (L1999), Aqua (L2002) and SNPP(L2011).
- CERES FM6 will fly on JPSS-1 in FY17 (2nd Qtr). The CERES follow-on instrument (Radiation Budget Instrument, or RBI) will fly on JPSS-2 in FY21 (4th Qtr).

Global TOA **All-Sky** Radiation Anomalies (CERES_EBAF_Ed2.8; 03/2000 – 5/2016)

Global TOA **Clear-Sky** Radiation Anomalies (CERES_EBAF_Ed2.8; 03/2000 – 5/2016)

Anomalies in Zonal Mean Reflected SW TOA Flux

- April & May 2016 clear-sky anomalies are most pronounced poleward of 60°N.

- Decreases in both sea-ice and snow over land contribute to negative SW TOA flux anomalies.
- Areas of very low snow cover anomalies in North America, Western-Russia and Eastern Siberia have a significant effect on the flux anomalies.

Arctic Snow/Sea-Ice - 2016

- Jan, Feb, Apr & May 2016 set new record lows for those months for the period of satellite observations.
- Snow cover in the Northern Hemisphere was the lowest in fifty years for April and the fourth lowest for May.
- An unusually early retreat of sea ice in the Beaufort Sea and pulses
 of warm air entering the Arctic from eastern Siberia and
 northernmost Europe in part drove below-average ice conditions.
- However, September 2016 was only the the fifth lowest in the satellite record, as summer 2016 saw unusually low pressure over the central Arctic Ocean.

Terra Lunar Deep Space Calibration (LDSC) Maneuver

- A DSC maneuver is an accelerated 240 degree pitch-over (360 relative to local horizon) during S/C night that provides observations of the cold background of deep space and an option for a lunar viewing.
- Two previous DSC maneuvers were executed in 2003:
 - March 26 maneuver was a deep space calibration (DSC)
 - April 14 maneuver was both deep space and a lunar calibration (LDSC).
- A LDSC provides the Terra instrument teams observations that can be compared against the LDSC in 2003.
 - Can be used to verify calibration changes from onboard calibration sources over the lifetime of the mission.
 - A LDSC maneuver is scheduled for August 2017.

DSC Concept Diagram (Animation)

⁻ Blue block on S/C is instrument deck

Terra Extended Mission Options

- In 2015, the A-Train Mission Operations Working Group (MOWG) unanimously approved a new exit plan that reduced the constellation exit from a 19-km lowering to 4-km.
- The change provides Terra with additional fuel that could potentially be used to maintain the current MLT and altitude until fall 2021 (3 years longer than original plan).
- However, this would increase the time before orbital reentry to 50 years after end of mission (when 9 am MLT is crossed).
 - The current requirement is 25 years after EOM.
- Originally Terra was exempted from the orbital debris requirements, but now a waiver for any requirements not met because of operational extension decisions is needed.
- Various exit plans have been proposed by the Terra Project.

Proposed Plan (Option 1) Mean Local Time

- Maintain the current MLT and altitude until fall 2021 (3 years longer than original plan) before exiting constellation.
 - => 20+ year Terra record at constant altitude and MLT.

Fallback Option Overview

- All Fallback Options were developed in case the Proposed Plan (Option 1) is not approved by NASA HQ
 - Attempts to balance science vs. debris/time on orbit goals
- Fallback 1 Maintains both MLT & altitude until after the Lunar Deep Space Calibration (LDSC) scheduled for August 2017
 - LDSC is attempting to replicate the 2003 maneuver to greatest extent possible
 - Results will be compared to validate ASTER science mission data
- Fallback 2 Maintains altitude until after the Lunar Deep Space Calibration scheduled for August 2017
 - Holds altitude for LDSC in August 2017
- Fallback 3 Maintains altitude for as long as possible before we get close to another mission
 - Holds altitude for LDSC in August 2017 and beyond
 - Allots MISR until 2021 to get their science processing updated to account for lower altitude

Lifetime Mean Local Time

Lifetime Orbit Altitude

Time-on-Orbit Comparisons						NASA				
Decommissioning Plan	Violation	Mission MLT Violation (10:15 AM)	Year/	De- orbit Year	# of de-orbit burns	Final Apogee (km)		End of Mission (EOM)		Large Object Collision

Decommissioning Plan	Science MLT Violation (10:29 AM)	Mission MLT Violation (10:15 AM)	Year/ Lower Alt	De- orbit Year	# of de-orbit burns	Final Apogee (km)	Final Perigee (km)		EOM to Reentry (yrs)	Reentry date	Large Object Collision
Option 1	2021	2022	2022	2026	6	702.31	654.21	2026	50	2076	1.10%
Option 2	N/A	N/A	2017	2017	18	705.08	592.37	2017	32	2049	0.49%
Fallback Option 1	2019	2021	2018	2024	14	701.45	613.61	2024	36	2060	0.63%
Fallback Option 2	2017	2019	2018	2022	18	701.00	591.77	2022	31	2053	0.45%
Fallback Option 3	2017	2019	2021	2022	18	700.26	596.78	2022	31	2053	0.46%

- Planned options provides maximum mission life but longest reentry time
- Fallback options attempt to compromise science with debris risk
 - Fallback Options 2 & 3 actually beat Option 2 (Decommission ASAP) by taking advantage of solar flux & still provide additional science benefit

Reference Only Planned Option

Fallback Options

Key Columns

Note: 1) An A/M Ratio of 0.0099 was used in the DAS 2.02 Time-on-Orbit tool. This was calculated using Terra's tumbling area. Reentry times calculated using maximum apogee and perigee values instead of average values (conservative)

Terra Waiver Request: Current Status

- Both Terra Science and Constellation MOWG have concurred with recommended options.
- Terra-appointed review panel strongly endorsed Option 1.
- The various options are under review at NASA HQ Earth Science Directorate (ESD).
- NASA ESD wants an independent review panel to assess science impacts of various options.

CERES Reviews During Coming Year

- 1) Earth Radiation Budget Science PPBE Review (May 5, 2017)
- 2) Earth Radiation Budget Science Team Review (May, 2017)
- 3) Terra, Aqua and S-NPP Senior Reviews
- Proposals to be submitted in early March 2017

CERES Journal Publications and Citation Counts (For Papers Between 1993-2016; Updated October 12, 2016)

- Total number of peer-reviewed journal articles: 1,252
- Total number of citations to CERES papers: 37,410

(Compiled by Anne Wilber & Dave Kratz)

Number of Unique Users by CERES Data Product (through September 30, 2016)

Level	Product	2010	2011	2012	2013	2014	2015	2016
1b	BDS	11	9	14	19	14	11	10
	SSF	84	77	138	223	247	253	211
	FLASH_SSF	25	8	15	23	30	61	30
2	СЗМ	31	32	33	37	28	55	44
	ES8	22	20	18	31	16	21	15
	SSF-MISR	9	4	2	5	4	2	1
	EBAF-TOA	72	160	346	484	579	580	414
	EBAF-Surface			147	289	375	424	359
	SYN1deg	70	139	188	331	375	431	389
3 & 3b	SSF1deg	77	126	107	157	166	160	151
	ISCCP-D2like	17	12	37	57	41	40	38
	ES4	59	36	11	27	19	13	11
	ES9	21	12	5	13	9	5	5
	FLASH_TISA	17	18	20	17	15	15	25

CERES Terra and Aqua Edition 4 – Status

- -Instrument gains and SRFs: Delivered
 - Improvement to Aqua SW part of TOT SRF.
- -CERES Clouds code: Delivered.
 - Increased cloud fraction (more consistent with CALIPSO).
 - Decreased cloud optical depth (more thin clouds).
 - Significant improvements to polar cloud mask.
- -Inversion (ADMs and SOFA) code: Delivered.
- •2nd generation CERES ADMs; Improved parameterized surface fluxes.
- -SARB and TISA code: Partially delivered.
 - Use of 5-channel 1-hourly GEO cloud retrievals.
 - Consistent reanalysis and MODIS calibration throughout.
 - SYN1deg to be released 1-hourly, 3-hourly, daily and monthly.
 - Consistent non-GEO and GEO TISA products (all GMT).
 - Improved to Fu-Liou RT code and ancillary inputs (e.g., Ed4 clouds +overlap, surface albedo, MATCH aerosols).
 - EBAF-TOA (anticipated release January 2017)
 - EBAF-SFC (anticipated release April 2017)

CERES Terra and Aqua Data Product Availability

Data Product	Level	Ed2.8	Ed3.0	Ed4.0
BDS	1	-	05/2016	05/2016
SSF	2	-	05/2016	05/2016
SSF1deg	3	-	04/2016	11/2015
SYN1deg	3	-	04/2016	Anticipated 03/2017
ISCCP-D2like (CldTypHist)	3	-	05/2016	Anticipated 03/2017
EBAF-TOA	3b	05/2016	-	Anticipated 01/2017
EBAF-SFC	3b	02/2016	-	Anticipated 04/2017

Edition1 Product Availability

Product	Platform	Processed through	Current	Publically Available
BDS	S-NPP	August 31, 2016	Yes	Yes
SSF	S-NPP	August 31, 2016	Yes	Yes
SSF1deg- Hour	S-NPP	August 31, 2016	Yes	Yes
SSF1deg- Day/Month	S-NPP	August 31, 2016	December 2016	No
SYN1deg	Merged		March 2017	No

- SSF1deg-Day/Month products will be reprocessed.
- SYN1deg will start late fall.

COVE

- DOE turned Ches Light over to GSA for excess; GSA put Ches Light up for auction last spring.
- New owner has been identified. Private individual. Not certain how platform will be used.
- New owners willing to rent to us so we can continue to operate BSRN & AEORNET.
- BSRN instrument suite is operating autonomously at COVE. AERONET instrument is broken.
- A 2nd BSRN instrument suite is operating at CAPABLE.
- Approval to operate MPLNET at CAPABLE was finally granted.

Upcoming Conferences & Meetings of Interest

American Geophysical Union

- December 12-16, 2016, San Francisco, CA

AMS Annual Meeting

- Jan 22-26, 2017, Seattle, WA

3rd International A-Train Symposium 2017

- April 19-21, 2017, Pasadena, CA

EGU General Assembly

- April 23-28, Vienna, Austria.

Spring 2017 CERES Science Team Meeting

- May 9-11, NASA LaRC, Hampton, VA.

Gordon Research Conference: Radiation & Climate

- July 16-21, Bates College, ME.

Other News

- CLARREO Pathfinder mission will fly on ISS ~2020 (reflected solar spectrometer only).
- RAVAN launch October 2016.

End